An Ensemble Technique based on Singular Spectrum Analysis applied to Daily Rainfall Forecasting

نویسندگان

  • Daniela Baratta
  • Francesco Masulli
چکیده

In previous work, we have proposed a constructive methodology for temporal data learning supported by results and prescriptions related to the Embedding Theorem, and using the Singular Spectrum Analysis both in order to reduce the effects of the possible discontinuity of the signal and to implement an efficient ensemble method. In this paper we present new results concerning the application of this approach to the forecasting of the individual rainfall intensities series collected by 135 stations distributed in the Tiber basin. The average RMS of the obtained predictions is less than 3 mm of rain.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Daily Rainfall Forecasting using an Ensemble Technique based on Singular Spectrum Analysis

In previous work, we have proposed a constructive methodology for temporal data learning supported by results and prescriptions related to the Takens-Mañé theorem and using the Singular Spectrum Analysis in order to reduce the effects of the possible discontinuity of the signal. In this paper we present some new results concerning the application of this approach to the forecasting of the indiv...

متن کامل

Application of an ensemble technique based on singular spectrum analysis to daily rainfall forecasting

In previous work, we have proposed a constructive methodology for temporal data learning supported by results and prescriptions related to the embedding theorem, and using the singular spectrum analysis both in order to reduce the effects of the possible discontinuity of the signal and to implement an efficient ensemble method. In this paper we present new results concerning the application of ...

متن کامل

Rainfall time series forecasting based on Modular RBF Neural Network model coupled with SSA and PLS

Accurate forecast of rainfall has been one of the most important issues in hydrological research. Due to rainfall forecasting involves a rather complex nonlinear data pattern; there are lots of novel forecasting approaches to improve the forecasting accuracy. In this paper, a new approach using the Modular Radial Basis Function Neural Network (M–RBF–NN) technique is presented to improve rainfal...

متن کامل

Predicting the Brexit outcome using singular spectrum analysis

In a referendum conducted in the United Kingdom (UK) on June 23, 2016, $51.6\%$ of the participants voted to leave the European Union (EU). The outcome of this referendum had major policy and financial impact for both UK and EU, and was seen as a surprise because the predictions consistently indicate that the ``Remain'''' would get a majority. In this paper, we investigate whether the outcome o...

متن کامل

Daily Runoff Forecasting Model Based on ANN and Data Preprocessing Techniques

There are many models that have been used to simulate the rainfall-runoff relationship. The artificial neural network (ANN) model was selected to investigate an approach of improving daily runoff forecasting accuracy in terms of data preprocessing. Singular spectrum analysis (SSA) as one data preprocessing technique was adopted to deal with the model inputs and the SSA-ANN model was developed. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003